
Creative Software Design

8 – Inheritance, Const & Class

Yoonsang Lee

Fall 2023

Outline

• Brief intro to "Fundamental Principles of Object-
Oriented Programming"

• Inheritance

– Concept

– Overriding

– Constructor & Destructor with Inheritance

– Member initializer list with Inheritance

– Multiple Inheritance

• Const & Class

Fundamental Principles of Object-Oriented

Programming

• Encapsulation (already covered in 6 - Class)

– Binding the data with the code that manipulates it into a single unit

– → Hiding details of the unit (data hiding).

• Inheritance (Today’s topic)

– Creating a class based on another class by "inheriting" its properties and
behaviors (attributes and methods, or member variables and member functions).

• Polymorphism (Next lecture)

– The ability to create a variable, a function, or an object that has more than one
form.

• Abstraction (closely related to polymorphism)

– The principle of generalization - from a specific instance to a more generalized
concept.

Inheritance

• Building a class on the top of an existing class.

• The goal is to

– reuse the code for similar functionalities

– and write new code only for additional functionalities.

• This allows you to establish relationships between

classes.

Inheritance: is-a relationship

Inheritance: is-a relationship

Composition: has-a relationship

Class Banana inherits from class Fruit.

Class Lunch has a class Banana instance as a

member variable.

color
flavor
taste
...

Inheritance: is-a relationship

• "is-a" relationship: use (public) inheritance when "A" is a
"B".

– A car is a vehicle.
A truck is a vehicle.
A cart is a vehicle.
…

– A student is a person.
A professor is a person.
…

– A person is an animal.
A dog is an animal.
…

• If a class A inherits from another class B,

– Class A implicitly "has" the member variables and functions

of class B.

– Class A can have additional member variables and functions.

Inheritance

B

A

Base class

Derived class

(UML class diagram)

Inheritance

Parent class Super class

Child class Subclass

or or class A : public B

{

...

};

UML Class Diagram Example

Circle

-x: int
-y: int
-radius: double

+getArea(): double

+: public

-: private

#: protected

variable: data type

method(parameter): return type

Unified Modeling Language (UML): for visualizing the design of a software system.

An Inheritance Example

class Car {

public:

Car() {}

void Accelerate();

void Decelerate();

LatLng GetLocation();

double GetSpeed();

double GetWeight();

int GetCapacity();

private:

LatLng location_;

double speed_;

double weight_;

int capacity_;

};

class Truck {

public:

Truck() {}

void Accelerate();

void Decelerate();

LatLng GetLocation();

double GetSpeed();

double GetWeight();

double GetMaxLoad();

private:

LatLng location_;

double speed_;

double weight_;

double max_load_;

};
Car

-location_: LatLng
-speed_: double
-weight_: double
-capacity_: int

+Accelerate()
+Decelerate()
+getLocation(): LatLng
+GetSpeed(): double
+GetWeight(): double
+GetCapacity(): int

Truck

-location_: LatLng
-speed_: double
-weight_: double
-max_load_: double

+Accelerate()
+Decelerate()
+getLocation(): LatLng
+GetSpeed(): double
+GetWeight(): double
+GetMaxLoad(): double

An Inheritance Example

// Car class.

class Car : public Vehicle {

public:

Car() : Vehicle() {}

int GetCapacity();

private:

int capacity_;

};

// Vehicle class.

class Vehicle {

public:

Vehicle() {}

void Accelerate();

void Decelerate();

LatLng GetLocation();

double GetSpeed();

double GetWeight();

private:

LatLng location_;

double speed_;

double weight_;

};

// Truck class.

class Truck : public Vehicle {

public:

Truck() : Vehicle() {}

double GetMaxLoad();

private:

double max_load_;

};

-location_: LatLng
-speed_: double
-weight_: double

+Accelerate()
+Decelerate()
+getLocation(): LatLng
+GetSpeed(): double
+GetWeight(): double

Car

-capacity_: int

+GetCapacity(): int

Truck

-max_load_: double

+GetMaxLoad(): double

Vehicle

An Inheritance Example

// Car class.

class Car : public Vehicle {

public:

Car() : Vehicle() {}

int GetCapacity();

private:

int capacity_;

};

// Vehicle class.

class Vehicle {

public:

Vehicle() {}

void Accelerate();

void Decelerate();

LatLng GetLocation();

double GetSpeed();

double GetWeight();

private:

LatLng location_;

double speed_;

double weight_;

};

// Main routine.

int main() {

Car car;

cout << car.GetCapacity() << endl;

cout << car.GetSpeed() << endl;

cout << car.GetWeight() << endl;

return 0;

}

-location_: LatLng
-speed_: double
-weight_: double

+Accelerate()
+Decelerate()
+getLocation(): LatLng
+GetSpeed(): double
+GetWeight(): double

Car

-capacity_: int

+GetCapacity(): int

Truck

-max_load_: double

+GetMaxLoad(): double

Vehicle

Another inheritance example

Quiz 1

• Go to https://www.slido.com/

• Join #csd-ys

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2022123456: 4)

• Note that your quiz answer must be submitted in the

above format to receive a quiz score!

https://www.slido.com/

Overriding vs. Overloading

● Function overloading (함수 중복정의)

● provides multiple definitions of function by changing signatures (i.e. changing the nu

mber, order, or data type of parameters but leaving the function name the same)

● has nothing to do with inheritance

● should be used in the same scope

int print(int a) { … }

int print(int a, int b) { … }

● Function overriding (함수 재정의)

● Redefinition of base class function in the derived class with same signatures

Overriding Member Function

● You can override a member function to provide a custom functionality of

the derived class.

● Redefine a member function with the same name as the inherited functio

n.

○ All ancestor's member functions with the same name will be

occluded.

○ To access the ancestor's member functions, use

Ancestor::MemberFunction().

An example of overriding

// Vehicle class.

class Vehicle {

public:

Vehicle() {}

void Accelerate();

void Decelerate();

LatLng GetLocation();

double GetSpeed();

double GetWeight();

private:

LatLng location_;

double speed_;

double weight_;

}; // Main routine.

int main() {

Car car;

cout << car.GetCapacity() << endl;

cout << car.GetSpeed() << endl;

cout << car.GetWeight() << endl;

return 0;

}

// Car class.

class Car : public Vehicle {

public:

Car() : Vehicle() {}

int GetCapacity();

// Override the parent's GetWeight().

double GetWeight() {

return Vehicle::GetWeight()+passenger_weight_;

}

private:

int capacity_;

double passenger_weight_;

};

An example of overriding

// Vehicle class.

class Vehicle {

public:

Vehicle() {}

void Accelerate();

void Decelerate();

LatLng GetLocation();

double GetSpeed();

double GetWeight();

private:

LatLng location_;

double speed_;

double weight_;

}; // Main routine.

int main() {

Car car;

cout << car.GetCapacity() << endl;

cout << car.GetSpeed() << endl;

cout << car.GetWeight() << endl;

return 0;

}

// Car class.

class Car : public Vehicle {

public:

Car() : Vehicle() {}

int GetCapacity();

// Override the parent's GetWeight().

double GetWeight() {

return Vehicle::GetWeight()+passenger_weight_;

}

private:

int capacity_;

double passenger_weight_;

};

=weight_?

An example of overriding

// Vehicle class.

class Vehicle {

public:

Vehicle() {}

void Accelerate();

void Decelerate();

LatLng GetLocation();

double GetSpeed();

double GetWeight();

protected:

LatLng location_;

double speed_;

double weight_;

};

// Car class.

class Car : public Vehicle {

public:

Car() : Vehicle() {}

int GetCapacity();

// Override the parent's GetWeight().

double GetWeight() {

return weight_ + passenger_weight_;

}

private:

int capacity_;

double passenger_weight_;

};

// Main routine.

int main() {

Car car;

cout << car.GetCapacity() << endl;

cout << car.GetSpeed() << endl;

cout << car.GetWeight() << endl;

return 0;

}

public: everyone can access.

private: only its member functions can

access.

protected: its member functions and the

member functions of descendant classes can

access.

Constructor & Destructor with Inheritance

• Constructor and destructor call order:

– Constructors are called from base class to derived class.

– Destructors are called in reverse order.

class Parent {

public:

Parent() { cout << " Parent"; }

~Parent() { cout << " ~Parent"; }

};

class Child : public Parent {

public:

Child() { cout << " Child"; }

~Child() { cout << " ~Child"; }

};

class Test : public Child {

public:

Test() { cout << " Test"; }

~Test() { cout << " ~Test"; }

};

int main() {

{

Child child;

cout << endl;

}

cout << endl;

{

Test test;

cout << endl;

}

cout << endl;

return 0;

}

Parent Child

~Child ~Parent

Parent Child Test

~Test ~Child ~Parent

Constructor & Destructor with Inheritance: Example 1

Constructor & Destructor with Inheritance: Example 2

Circle

-x: int
-y: int
-radius: double

+getArea(): double

Sphere

-z: int

+getVolume(): double

Constructor & Destructor with Inheritance: Example 2

Circle

-x: int
-y: int
-radius: double

+getArea(): double

Sphere

-z: int

+getVolume(): double

implicitly calls Circle’s default

constructor which is not defined

Constructor & Destructor with Inheritance: Example 2

Circle

#x: int
#y: int
#radius: double

+getArea(): double

Sphere

-z: int

+getVolume(): double

Constructor & Destructor with Inheritance: Example 2

Circle

#x: int
#y: int
#radius: double

+getArea(): double

Sphere

-z: int

+getVolume(): double

explicitly calls Circle’s constructor

Constructor & Destructor with Inheritance: Example 2

Circle

#x: int
#y: int
#radius: double

+getArea(): double

Sphere

-z: int

+getVolume(): double

Quiz 2

• Go to https://www.slido.com/

• Join #csd-ys

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that your quiz answer must be submitted in the

above format to receive a quiz score!

https://www.slido.com/

Member initializer list with Inheritance

• You can't initialize (by a member initializer list) a

parent class member in the child class.

• The child class can indirectly initialize the parent's

members by calling the parent's constructor in its

member initializer list.
class A

{

public:

int memberA;

A(int n):memberA(n) { }

};

class B: public A

{

public:

B():memberA(10) {} // error

};

class A

{

public:

int memberA;

A(int n):memberA(n) { }

};

class B: public A

{

public:

B():A(10) {} // Ok

};

Person Example - outline

// Person class.

class Person {

public:

Person(const string& name);

const string& name();

const string& address();

void ChangeAddress(const string& addr);

};

// Student class.

class Student : public Person {

public:

Student(const string& name);

void RegisterClass(int class_id);

int GetNumClasses();

int ComputeTuition();

};

// Employee class

class Employee : public Person {

public:

Employee(const string& name,int salary);

int salary();

int ComputeIncomeTax();

void SetSalary(int salary);

};

// Faculty class

class Faculty : public Employee {

public:

Faculty(const string& name, int salary);

void TeachClass(int class_id);

};

Person Example - implementation
student.h

#ifndef _STUDENT_H_

#define _STUDENT_H_

#include <set>

#include "person.h"

class Student : public Person {

public:

Student(const std::string& name)

: Person(name) {}

void RegisterClass(int class_id) {

registered_classes_.insert(class_id);

}

int GetNumClasses() {

return registered_classes_.size();

}

int ComputeTuition() {

return registered_classes_.size() * 100

+ 500;

}

private:

std::set<int> registered_classes_;

};

#endif

person.h

#ifndef _PERSON_H_

#define _PERSON_H_

#include <string>

class Person {

public:

Person(const std::string& name)

: name_(name) {}

const std::string& name() {

return name_;

}

const std::string& address() {

return address_;

}

void ChangeAddress(const std::string& addr) {

address_ = addr;

}

private:

std::string name_, address_;

};

#endif

Person Example - implementation

main.cc

#include "employee.h"

#include "faculty.h"

#include "student.h"

using namespace std;

int main() {

Student john("John"), david("David");

Employee susan("Susan", 200);

Faculty daniel("Daniel", 100);

john.ChangeAddress("New York");

david.RegisterClass(101);

daniel.TeachClass(101);

daniel.TeachClass(102);

return 0;

}

Multiple Inheritance

• Inheriting from two or more base
classes.

– The derived class has all the
members of base classes

• Issues

– Ambiguity
• What happens if base classes has same-

named members?

– The diamond problem
• What happens if parent classes are derived

from the same grandparent class?

Student

GraduateStudent

Employee

Multiple Inheritance: Example

int main() {

GraduateStudent mark("Mark", 50);

cout << mark.GetNumClasses() << endl;

cout << mark.salary() << endl;

return 0;

}

class Person {

public:

// ...

};

class Student : public Person {

public:

// ...

};

class Employee : public Person {

public:

// ...

};

// Multiple inheritance example.

class GraduateStudent

: public Student, public Employee

{

public:

GraduateStudent(const string& name,

int salary)

: Student(name),

Employee(name + "*", salary) {

}

};

Multiple Inheritance: Example

int main() {

GraduateStudent mark("Mark", 50);

// Eror - ambiguous function DoSomething

mark.DoSomething();

return 0;

}

class Person {

public:

// ...

};

class Student : public Person {

public:

// ...

void DoSomething();

};

class Employee : public Person {

public:

// ...

void DoSomething();

};

// Multiple inheritance example.

class GraduateStudent

: public Student, public Employee {

public:

GraduateStudent(const string& name,

int salary)

: Student(name),

Employee(name + "*", salary) {}

};

Multiple Inheritance

• Actually, you can avoid these problem by using virtual
inheritance in C++.

• General advice: Avoid using multiple inheritance as much
as possible.

– It is commonly believed that multiple inheritance tends to mass
things up.

– That's why Java forbids multiple inheritance.

• Note that multiple inheritance from interfaces (pure abstract
classes in C++) can be very helpful.

– Java only allows multiple inheritance from interfaces (“implements”
multiple interfaces in Java)

Const: review

• Const variables

const int MAX = 100;

• Const parameters

int sum(const int x, const int y) { . . . }

• Pointer to const and const pointer

const int *pnum1 = &num1;

int* const pnum2 = &num2;

Const & Class

• Const member variables

– should be initialized in member initializer list of a
constructor

• Const member functions

– can read the value of member variables

– cannot change the value of member variables

• Const object

– cannot change the value of member variables on a const
object

– cannot call non-const member functions on a const object

Const: member variables

???

Const: member variables

• Const member variables

– should be initialized in member initializer list of a constructor

Const: member function

???

Const: member function

• Const member functions

– can read member variables, cannot update member variables

Const: object

• Const object

– cannot update member
variables

– cannot call non-const
member functions

Quiz 3

• Go to https://www.slido.com/

• Join #csd-ys

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that your quiz answer must be submitted in the

above format to receive a quiz score!

https://www.slido.com/

Class Inheritance Types

● Types of inheritance: public, protected, and private.

○ Depending on the inheritance types, the parent’s member has diffe

rent access control IN the child class.

○ Most commonly used is public inheritance

(and probably it's the only useful inheritance).

Type of inheritance Parent’s

public member

Parent’s

protected member

Parent’s

private member

public public protected x (not accessible)

protected protected protected x (not accessible)

private private private x (not accessible)

Example of Private Inheritance

class A {

public:

void APublic() {}

protected:

void AProtected() {}

private:

void APrivate() {}

};

// Private inheritance.

class CA : private A {

public:

void CAPublic() {

APublic(); // OK.

AProtected(); // OK.

APrivate(); // Error.

}

void CAPublic2() {}

protected:

void CAProtected() {

}

private:

void CAPrivate() {

}

};

class Client : public CA {

void Function() {

APublic(); // Error.

AProtected(); // Error.

APrivate(); // Error.

CAPublic(); // Error.

CAPublic2(); // OK.

CAProtected(); // OK.

CAPrivate(); // Error.

}

};

// Main routine.

int main() {

CA ca;

ca.APublic(); // Error.

ca.CAPublic(); // Error

ca.CAPublic2(); // OK.

...

}

Next Time

• Labs for this lecture:

– Lab1: Assignment 8-1

– Lab2: Assignment 8-2

• Next lecture:

– 9 - Polymorphism 1

	슬라이드 1: Creative Software Design 8 – Inheritance, Const & Class
	슬라이드 2: Outline
	슬라이드 3: Fundamental Principles of Object-Oriented Programming
	슬라이드 4: Inheritance
	슬라이드 5: Inheritance: is-a relationship
	슬라이드 6: Inheritance: is-a relationship
	슬라이드 7: Inheritance
	슬라이드 8: UML Class Diagram Example
	슬라이드 9: An Inheritance Example
	슬라이드 10: An Inheritance Example
	슬라이드 11: An Inheritance Example
	슬라이드 12: Another inheritance example
	슬라이드 13: Quiz 1
	슬라이드 14: Overriding vs. Overloading
	슬라이드 15: Overriding Member Function
	슬라이드 16: An example of overriding
	슬라이드 17: An example of overriding
	슬라이드 18: An example of overriding
	슬라이드 19: Constructor & Destructor with Inheritance
	슬라이드 20: Constructor & Destructor with Inheritance: Example 1
	슬라이드 21: Constructor & Destructor with Inheritance: Example 2
	슬라이드 22: Constructor & Destructor with Inheritance: Example 2
	슬라이드 23: Constructor & Destructor with Inheritance: Example 2
	슬라이드 24: Constructor & Destructor with Inheritance: Example 2
	슬라이드 25: Constructor & Destructor with Inheritance: Example 2
	슬라이드 26: Quiz 2
	슬라이드 27: Member initializer list with Inheritance
	슬라이드 28: Person Example - outline
	슬라이드 29: Person Example - implementation
	슬라이드 30: Person Example - implementation
	슬라이드 31: Multiple Inheritance
	슬라이드 32: Multiple Inheritance: Example
	슬라이드 33: Multiple Inheritance: Example
	슬라이드 34: Multiple Inheritance
	슬라이드 35: Const: review
	슬라이드 36: Const & Class
	슬라이드 37: Const: member variables
	슬라이드 38: Const: member variables
	슬라이드 39: Const: member function
	슬라이드 40: Const: member function
	슬라이드 41: Const: object
	슬라이드 42: Quiz 3
	슬라이드 43: Class Inheritance Types
	슬라이드 44: Example of Private Inheritance
	슬라이드 45: Next Time

